0=4.9t^2+8t-600

Simple and best practice solution for 0=4.9t^2+8t-600 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=4.9t^2+8t-600 equation:



0=4.9t^2+8t-600
We move all terms to the left:
0-(4.9t^2+8t-600)=0
We add all the numbers together, and all the variables
-(4.9t^2+8t-600)=0
We get rid of parentheses
-4.9t^2-8t+600=0
a = -4.9; b = -8; c = +600;
Δ = b2-4ac
Δ = -82-4·(-4.9)·600
Δ = 11824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11824}=\sqrt{16*739}=\sqrt{16}*\sqrt{739}=4\sqrt{739}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{739}}{2*-4.9}=\frac{8-4\sqrt{739}}{-9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{739}}{2*-4.9}=\frac{8+4\sqrt{739}}{-9.8} $

See similar equations:

| 4×x+16=100 | | (X+2)+(3x+2)+(4x)=180 | | -6=n/2-7 | | 6x-14x+3x=4C | | (5z-13)=97 | | 3=1.33^x | | 6=3÷i | | 9w-39=3(w+1) | | (5z-13)=83 | | |3x+11|=2x+17 | | (5x-22)+(4x-23)=180 | | 38=48-x | | x+7=-1/4(8x-2) | | 5x-30=x+14-12 | | 3x-10x-17=0 | | x+7=-1/4(8x+2) | | -4/5f+13=-13 | | 3+12=-5(7x-3) | | 22.50=1.25×d | | 7x2-1=3x | | 4(2x+6)=-13+21 | | 4p+12/3=p-4 | | f=3*3.14=73.14 | | 7x+4-5x=5+x-7 | | 1/2(x)(x+4)=20 | | -8(3–x)=32 | | 3-(2x+4)=6x+2(5x-1) | | 1/2+7=n+14/2 | | 2x2-13x=1 | | -2(t+2)=5t=6t+11 | | 3x+20=4x-129 | | 3x+21=5x-5 |

Equations solver categories